
Spring 2019 1 Lab6_ET438b_OL.docx

ET 438B-On Line

Sequential Control and Data Acquisition

Laboratory 6

Introduction to Do-More Designer and Connected Component Workbench Programming

Software

Laboratory Learning Objectives

1.) Navigate the Do-More Designer and Connected Component Workbench Software.

2.) Create and save a simple ladder logic program using the software packages

3.) Download the program to a PLC and monitor its operation using debug/monitor functions in

the software

4.) Use the contact commands and output commands to create basic ladder logic programs.

Technical Background

Programmable Logic Controls (PLCs) implement sequential control logic in many industrial

applications. PLCs are industrially hardened microprocessors that perform logic operations,

timing, counting, sequencing, proportional-integral-derivative (PID) control, and other advanced

control functions. PLCs use software programs to implement these functions, which makes these

functions easy to update and modify. The first PLCs were developed in the late 1960's by the

automotive industry as a replacement for hard-wired electromechanical relay panels used to

control assembly lines and other tooling. This eliminated the high costs related to reconfiguring

tooling for each new model. The PLC has evolved into a multifunction device that can

communicate with other PLC and host computers using a number of protocols, collect and

process data, and link with front-office software to give plant management real-time information

regarding machine operations.

PLCs have the following advantages: a.) they are flexible and easily reconfigured to do different

tasks or include additional tasks. b.) they use solid-state electronics and are highly reliable when

installed correctly. c.) they cost less than electomechanical components. d.) their installed

programs can be easily documented by simply printing out the completed source code. The PLC

finds application at several levels in modern control applications. The trend is to use smaller

PLCs in a distributed control system. Locating smaller PLCs on individual machines that

communicate among other controllers and human-machine interfaces (HMIs) allows control

engineers to divide large complex problems into a series of smaller more easily coded control

applications.

A PLC can come in two forms: expandable or fixed. Fixed PLCs have a defined hardware

configuration that cannot include other input/outputs or special functions. Expandable PLCs

come with a base number of input/output points but can grow by adding other modules to the

base configuration. These modules include PID control, analog inputs, analog outputs and

Spring 2019 2 Lab6_ET438b_OL.docx

communication modules. These modules install into a backplane or rack along with a power

supply.

Figure1 shows an expandable PLC configuration. Expandable PLCs require a backplane that

usually includes a power supply. A designer can specify either ac or dc power inputs for the

PLC power. Older model PLCs accepted 120-240 AC input voltages. The industry trend is to

supply all control devices from lower voltage dc supplies, typically 24 Vdc.

Power

Supply

Processor

Module

Run

Program

Fault

DC

Inputs

1

2

3

4

5

6

7

8

DC

Inputs

1

2

3

4

5

6

7

8

DC

Outputs

1

2

3

4

5

6

7

8

AC

Outputs

1

2

3

4

5

6

7

8

ComunicationsAC

Inputs

1

2

3

4

5

6

7

8

Analog

Inputs

1

2

3

4

Analog

Outputs

1

2

3

4

Figure 1. Expandable Processor Configuration

Some configurations integrate the power supply with the processor. Other configurations allow

system designers to specify the processor in the backplane.

The input modules come in groups of 8 or 16 points and can handle either ac or dc. The system

designer can configure the dc modules to be either current sources or sinks. The output modules

install into the backplane also. Output modules can include dc source/sinking types, ac output,

and relay outputs. Relay outputs can accept either ac or dc voltages on the relay contacts but the

circuit current cannot exceed the manufacturer's maximum rating.

Modern PLC modules include analog input and outputs. These devices convert analog voltages

or currents into digital values for processing in PLC programs. The communications modules

allow system designers to download programs to the PLC and provide networking capability so

communication with other PLCs and HMIs is possible. Programming PLCs requires a host

computer, usually a PC. The PLC communicates with the host using several standards. Older

PLCs communicate using the high-level serial communications protocol RS-485. Other

communications links include RS-232 serial communication, USB, TCP/IP and Modbus.

PLC Processor Operation

PLCs are specialized application of microprocessors. They have many parts in common with

other computer systems. They take inputs, evaluate the inputs against a user-supplied program,

and produce usable outputs. PLCs use memory-map input/output (I/O) to correlate physical

input/output points to individual memory locations in the PLCs.

Spring 2019 3 Lab6_ET438b_OL.docx

Previous generations of PLCs used an addressing scheme that required programmers to specify

the physical location of I/O points starting with the type of module: input = I and output = O

followed by the slot in an expandable PLC. The final part of the address is the physical point on

the module. Figure 2 shows a byte of PLC processor memory used to map input points. The

input module has 16 dc inputs and is in slot 1 of the processor backplane. The following syntax

locates the logic 1 bits for Allen-Bradley PLCs in the SLC 5/500 and Micrologix families.

1 1 1 1 1010 0000 00 00

015

Figure 2. Input memory location for 16 bit PLC

Addresses of the logic 1 bits in the memory word:

 I:1/0

 I:1/1

 I:1/3

 I:1/8

 I:1/11

 I:1/15

The first part of this syntax identifies the memory location as an input. The number after the

colon is the slot location of the input points. The final number in the address is the physical input

point. The expression below gives the general syntax for the input memory map address.

 I:(slot number)/(point number)

The addresses of the output points are similar, but the initial identifier changes from I to O for

output. The following expression gives the general syntax for output addresses.

 O:(slot number)/(point number)

Specifying memory locations for individual bits not associated with an I/O point requires use of

the bit memory, also known at the bit file. The general syntax shown below identifies a bit file

memory location.

 B:(memory word)/(bit address)

The B identifies the desire memory location to be part of general memory. The number after the

colon identifies the word in memory that is addressed and the final number identifies the bit

within the word.

Spring 2019 4 Lab6_ET438b_OL.docx

Example: B:0/3

This address locates the forth bit in word 0 of the PLCs' bit file memory.

Programming instructions require I/O addresses to be complete. Instructions without addresses

produce error when programs compile.

The addressing scheme for the Automation Direct Do-More Designer series is much simpler.

The processors come with defined variable names that identify the I/O points of the PLC.

Specifying the PLC configuration creates the I/O variable listing. These variable are of type

BOOLEAN in the programming environment. The variables of the form Xn are inputs. The

variables of the form Yn are outputs. The value of n in both cases is an identifying integer that

specifies the input/output location. The code Cn specifies an internal bit in the Do-More

programming software. where n is an integer. The internal bits take the place of

electromechanical control relays and do not map to any physical input/output point.

External switches cause memory locations in input memory to change. Figure 3 shows how

external input devices connect to PLC inputs and appear in the memory map. The input

DC

Inputs

1

2

3

4

5

6

7

8

Grd Grd

24 Vdc

1 0000 000

015 7

Figure 3. External Input Device Memory Mapping

Spring 2019 5 Lab6_ET438b_OL.docx

module in this figure has three switches attached. Two are normally open and one is normally

closed. A closed switch produces a logic 1 in the PLC memory map and an open switch results

in a logic 0. The last eight bits of this memory word (high byte) are not available for addressing

since the slot contains an eight input. PLC input external wiring requires a power supply with

the correct current type (ac or dc) and voltage level for the input module to sense changes in state

of the input devices.

The CPU of a PLC can operate in two modes, run and program. In the run mode, the PLC

operating system places the CPU into a while loop and performs the following actions.

1.) Scan Inputs - the processor scans the input memory locations and updates them as

necessary.

2.) Scan Program - the PLC processor evaluates the logical statements and other

actions specified in the program using the latest input values

3.) Update Outputs- the processor updates output memory using the latest program

evaluation results.

4.) Processor Housekeeping - processor handles communication requests, updates

watchdog timer, responds to debug requests.

The time required for a PLC process to complete the four steps listed is called the processor scan

time. The length of the scan time increases with the complexity of the program and the number

on I/O points. As scan time increases rapidly changing input transitions may be lost. This can

cause program failure.

The programming mode of a PLC allows host computers running program development software

to download new program code to the processor. The host and PLC must have an established

communication link for a program transfer to take place. The lab PLCs communicate with host

PCs using RS-232 serial connections and USB. It is also possible to communicate with PLC

over TCP/IP networks. These devices can be part of the overall facility network or a stand-alone

private network.

A program developer can monitor and debug a PLC program when it is communicating with the

host computer or is part of a network to which both PLC and host belong. The PLC continues to

run its existing program in the monitor mode. A copy of the program appears in the

programming environment located on the host. This program reflects changes in PLC I/O by

changes in program code colors. PLC variable values are available to programmers in the

development software.

Spring 2019 6 Lab6_ET438b_OL.docx

Programming A PLC Using Ladder Diagram Programming

Several methods exist for programming modern PLCs. The most intuitive is Ladder Diagram

programming (LD). This programming method uses symbols that resemble the coil/contact

schematic diagram symbols used to document electromechanical hard-wired ladder logic.

Ladder Diagram programming is easy for someone with limited programming background to

understand and can quickly implement simple sequential control functions. LD programming

becomes cumbersome when a project required more advanced functions, such as the control on

robotic arms.

LD programming is graphical and has a set of rules for constructing ladder rungs. These rules

differ depending on the manufacturer of the PLC hardware/software but the following list covers

typical rules.

1.) All outputs are on the left-most location of a rule. No other symbol must appear

 after an output symbol on a rung.

2.) Inputs are on the right side of the rung

3.) Program logic flows down the ladder and from left to right

4.) The number of series contact symbols is limited

5.) The number of parallel contact symbols is limited

6.) A rung can have only one output

Figure 4 shows a valid ladder diagram from the Automation Direct Do-More Design 2.0

development software. Note that all input symbols are on the left and outputs are on the right.

Each instruction relates to a PLC memory address shown above the instruction.

Figure 4. Do-More Designer Ladder Diagram Showing Program Structure.

Spring 2019 7 Lab6_ET438b_OL.docx

The schematic symbols of the LD program represent instructions that test the condition of bits in

the PLC's memory. Tables 1 and 2 define the three basic logic symbols of ladder diagram

programming and give their outputs. The tables are for both the Allen-Bradley CCW and

RSlogix software. Table 1 gives the names for the symbol in each programming environment.

Table 1. Basic Ladder Program Instructions

LD Symbol

Connected Components

Workbench

Automation Direct

Do-More Designer

Direct Contact (DC) Normally Open Contact

(NOC)

Reverse Contact (RC) Normally Closed Contact

(NCC)

Direct Coil (DCL)

OUT coil – write bit

Ladder diagram programming uses logical continuity not electrical continuity to determine if an

output instruction is executed. The DC/NOC and RC/NCC instructions test any bit in memory

and return Boolean values based on the condition of the bit. The output instructions DCL/OUT

set or reset bits based of the final Boolean value of a rung. Table 2 lists the instructions and

their Boolean or bit results.

Table 2. Instruction Logical Results

 Input Instruction Output Instructions

Input Bit NOC/DC Output NCC/RC Output Rung Result OUT/DC Output

1 TRUE FALSE TRUE 1

0 FALSE TRUE FALSE 0

Electromechanical ladder diagrams and the ladder diagram program do not have a one-to-one

correspondence since LD programs operate on logical not electrical continuity. Figure5 shows

an electromechanical diagram for a motor starter control.

Two manually operated push buttons start and stop the motor by energizing the motor contactor

coil M. The contact M1, which is mechanically linked to the contactor coil, maintains electrical

continuity in the rung. The contact M2, also mechanically linked to M, energizes a control relay,

CR, the powers the correct indicator lights through the contacts CR1 and CR2. Figure 6 shows

how the I/O devices connect to PLC I/O modules and how the memory maps read for the motor

Spring 2019 8 Lab6_ET438b_OL.docx

off condition. Notice that there is no CR relay in the PLC implementation. A bit in PLC memory

evaluated using the DC/NOC and DCL/NCC instructions take its place.

M

Red

Grn

Stop Start

M1

CRM2

CR1

CR2

Figure 5. Electromechanical Motor Control Ladder diagram.

The following Boolean equations describe the logic of the motor control in Figure 5.

GLITECR2 RLITE1CR

CR2M

These equations are the building blocks of the ladder diagram program. Equation 1 shows that

the output M is energized when the stop button is not depressed and either the start button is

depressed or the M-coil is energized closing the M1 contact. Programming this into the PLC

requires that each input device be connected to an input point and the address of the input point

used with the correct instructions. Figure 7 shows the completed PLC ladder diagram program

developed using the Do-More Designer software. Rung 1 of the program handles the start/stop

operation. The address X0 associates the 0-th input of the PLC to the NOC instruction. This

input connects to the normally-closed push button stop switch.

Spring 2019 9 Lab6_ET438b_OL.docx

0 7

0 7

Inputs

Outputs
0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Stop

Start

M2

M1

Grd

24 Vdc

M

Red

Grn

Grd

PLC Memory

24 Vdc

01 00 0 0 0 0

1 0 0 0 0 0 00

Figure 6. PLC External Connections for Motor Control Derived From Electromechanical Diagram.

Figure 7. Ladder Diagram Implementation of a Motor Starter

Spring 2019 10 Lab6_ET438b_OL.docx

This input connects to the normally-closed push button stop switch. The ladder diagram

instruction is NOC and not a NCC that would match the normally closed symbol of the switch.

The PLC rung uses logical continuity as shown in the Boolean equation. The rung must test the

Stop switch to see if it is closed to complete logical continuity. The output instruction maps to

the Y0 memory location to energize the motor starter coil M. The inputaddresses X1 and X2

act on the bits associated with the start switch and the motor starter contact M1 respectively.

When the program runs, depressing the Start switch will cause the bit addressed at X1 by the

NOC instruction to return a TRUE. This is ANDed to the result of the NOC instruction

addressing the normally closed Stop switch causing the entire rung to return a TRUE to the OUT

instruction. A TRUE rung result for the NOC instruction sets the bit at Y0 energizing the motor

starter coil. The mechanical linkage between the M coil and the M1 contact causes the NOC

instruction addressing X2 to return TRUE providing an alternate logic path when the Start button

is released.

In rung 2, the NOC instruction addressing X3 maps to the input point for contact M2 that is also

mechanically linked to M. An energized M coil closes the contact and produces a TRUE result

from the NOC instruction. The TRUE result causes the OUT instruction labeled CR to set a bit

in memory. The CR variable replaces the external relay coil and contacts of the

electromechanical circuit shown in Figure 5.

Rungs 3 and 4 use the bit address CR along with NOC and NCC instructions to control indicator

lamps. Setting the CR bit causes the NOC instruction in rung 3 to return a TRUE. This causes

the OUT instruction to set the bit in memory location Y1 to 1 causing the red lamp to light. The

NCC instruction in rung 4 evaluates the logic 1 in the CR memory location and returns a FALSE.

This causes the OUT instruction addressing Y2 to reset the underlying bit de-energizing the

green light. The PLC operating system continually scan the inputs for state changes, runs the

program logic and updates output while the PLC is in the run mode.

Debugging Ladder Programs

Do-More Designer software includes a graphical debugger to help developers indentify logical

errors in program execution. To use the debugger a PLC must have a program file downloaded

to it and the PLC must be communicating with the host computer. Figure 8 shows the Do-More

Designer software with the debugger open and the status monitoring enabled.

The ladder logic diagram in Do-More changes color when operating in the debug mode. Figure

8 shows the Do-More Designer setup to debug and monitor input status changes. Color changes

on program rungs indentify the extent of logical continuity. In this case the blue high lights the

instructions that evaluate true on the rungs. Depressing a physical input switch causes the

Spring 2019 11 Lab6_ET438b_OL.docx

instructions linked to that memory address to change color. When a program includes counters

and timers, the debugger displays current values of their outputs.

Figure 8. Debugging and Status Monitoring in the Do-More Designer Software.

The Do-More Designer software includes a PLC simulator. Simulators are software tools that

execute processor instructions on the host without downloading them to the processor. The

Connected Components software does not include a PLC simulator. The PLC program must be

downloaded to the PLC processor to determine if it is working properly.

Figure 9 shows the front panel of the D0-More Designer PLC simulator. The simulator supports

16 bit inputs and outputs labeled X0-X15 and Y0-Y15 respectively. It also includes seven anlog

inputs and eight analog outputs. It can simulate three counters and three timers along with 24

internal bits labeled C0-C23. Students will use this simulator to test the operation of their

developed programs.

The PLC simulator can also produce signals for testing PID controller operation. The labs in this

course will not use this feature.

Spring 2019 12 Lab6_ET438b_OL.docx

Figure 9. Do-More Designer PLC Simulator

Spring 2019 13 Lab6_ET438b_OL.docx

Basic PLC Programming Procedure

Developing the PLC programs can be done on your own computers if you download the Do-

More Designer software and install it.

1.) View the demonstration videos in D2L the show how to navigate the development

environment, communicate from a host PC to a PLC, develop and download a program.

2.) Locate a computer system with PLC programming software installed. The computers in

D106 have RSLogix software and CCW software installed.

3.) Develop and debug PLC ladder programs specified below for the Do-More Simulator

Included in the software package.

Programming Assignments

Use the Do-More Designer software and the PLC simulator to develop and demonstrate the

following ladder diagram programs. Some of these programs can be combined into one

program. Those that require previously allocated I/O points must be in a separate program.

a.) Create a program that will cause outputs DO-0 and D0-1 to light when the switches DI-0 and

DI-2 are actuated.

b,) Create a program that will cause output DO-2 to light when either DI-5 or DI-3 are actuated.

c.) Develop a program using DI-0 and DI-1 as inputs and D0-3 as an output that implements

XOR logic with ladder instructions

d.) Use user defined variables to create a ladder program that implements the following logic

function:

CBACBACBAY

 Where: A=DI-4

 B=DI-5

 C=DI-6 and Y=DO-4

Lab 6 Assessment

Complete and submit the following items for grading and perform the listed actions to complete

this laboratory assignment.

1.) Complete the online quiz over Lab 6 technical background.

2.) Demonstrate working programs to the lab TA

3.) Submit pdf files of the working programs with a short written description of how each

program operates.

